New Directions in Reactor Design Through Miniaturization

Ronald S. Besser
Professor
Department of Chemical, Biochemical, and Materials Engineering
Stevens Institute of Technology
Hoboken, New Jersey
Miniaturization Progress
Microelectronics to MEMS

MOORE'S LAW

transistors

100,000,000
10,000,000
1,000,000
100,000
10,000
1000

8008
8086
4004

Pentium® Processor
486™ DX Processor
386™ Processor
286

©1992 UW-Madison
Microchemical Systems

Miniature reaction and other unit operations, possessing *specific advantages* over conventional chemical systems.
Outline

● Microreactors—What?
● Benefits of Miniaturization—Why?
● Examples of Microreactors: Fabrication, Characterization, and Reaction—How?
● Conclusions
Microreactors—What Are They?

- Not your mother’s microreactor
- At least 10X smaller than benchtop “microreactor” of the past

(Forschungszentrum Karlsruhe GmbH)
Microreactors—What Are They?

(Ehrfeld, et.al., IMM)

(Besser, et.al., IfM)

(Jensen, et.al., MIT)
Integration-Industrial Processes

Input flows must be divided and reduced
Output flows must be combined

(Merck production plant using micromixers)
Benefits of Miniaturization—Why?

- Surface to Volume Ratio
- Low Inventory ("Hold Up")
- Residence Time Distribution
- Low Transport Resistances
- Robust Materials
- Cost
Benefits: Surface to Volume

Heat Management
Surface Reaction
Explosion-Safe
Benefits: Low-Inventory (Hold-Up)

Schematic of As⁺ Ion Implanter

Phosgene Reactor, Geismar, LA

- Safety
- Environment
Benefits: Residence Time Distribution

Precise Control Over Geometry
Tuning of residence time
Improved selectivity

\[\text{Reaction equations:} \]
\[C_2H_4 + H_2O \rightarrow C_2H_5OH \]
\[2C_2H_5OH \rightarrow (C_2H_5)_2O + H_2O \]
Benefits: Low Transport Resistances

Overall Heat Transfer Coefficient

\[q_x = -k \frac{dT}{dx} \]
(conduction)

\[U = 25,000 \text{ W/m}^2\text{K} \]
Benefits: Robust Materials

- High strength, high melting point materials:
 - Metals
 - Ceramics
 - Silicon
- Array of fabrication processes (MEMS technology)
- Non-traditional reactor materials
 - Polymers
Benefits: Cost

- Reactor Fabrication
 - High volume batch
 - Si integrated circuit fabrication model
 - Metal/ceramic micromachining techniques
 - Interface of reactor to plant (?)

- Scale-Up Process
 - Linear process
 - Characterize unit module; scale up throughput by addition of modules
Microreactor Example—How?

- Reactor Fabrication
- Reactor Characterization
- Reaction Results
Microreactor Device

- Inlet Via
- Outlet Via
- Inlet Channel
- Manifold
- Microchannels (5 µm)
- Catalyst
- Pyrex Cover
- Silicon Chip
- 3.1 cm
Fabrication: Photolithography

(a) Coat with photoresist

Ultraviolet radiation

Glass mask

(b) Expose photoresist (positive, bonds broken)

(c) Remove exposed resist

(Shackelford)
Fabrication: Silicon Etching

Structured Catalyst Support in Reaction Zone

Alcatel Deep Reactive Ion Etch System
Pyrex-to-Silicon Bonding

Anodic Bonding

(750 VDC, 450°C)

(Kovacs)
Characterization Experiment

Setup

- Mass Spec
- Microreactor
- P Transducer 1
- MFC1
- Vent
- P Transducer 3
- MFC3
- Bubbler
Examples: Reactions

- Hydrocarbon hydrogenation/dehydrogenation
 - Cyclohexene hydrogenation/dehydrogenation
 - Benzene hydrogenation
- Hydrogen + oxygen in explosive regime
- Syngas conversion
- Catalytic combustion
Cyclohexene Hydrogenation/Dehydrogenation

\[
\text{Cyclohexene} \xrightarrow{Pt} \text{Cyclohexane} + 2\text{H}_2
\]

\[
\text{Cyclohexene} + \text{H}_2 \xrightarrow{Pt} \text{Cyclohexane}
\]

Models for hydrotreating and reforming reactions
Effect of Temperature on Selectivity

- Room temperature activity for both products
- Hydrogenation favored at T_{room} to 150°C
- Dehydrogenation favored above 150°C
- Time and temperature dependent deactivation
- 5 µm reactor more tolerant of T and t
Implementation of Microchemical Systems

Technology
- Arrays for parallel characterization (R&D)
- On-site, on-demand production
- Special environments
- New factory paradigm

Application
- Catalyst discovery; process development
- Toxics
- Fuel processing (fuel cells)
- Space; offshore platforms
- Highly selective synthesis (pharma, fine chemicals)
- DOE Vision 2020-30% reduction in waste, pollution
Conclusions

- Microreactors possess special properties due to their **small dimensions** (< 500 µm).

- Various choices of **robust materials** are available suitable for a variety of applications (metal, ceramic, silicon, polymer).

- **Silicon** microreactor example illustrates reactor fabrication, operation, and characterization.

- **Model hydrocarbon catalytic hydrogenation and dehydrogenation** reactions illustrate ability to take relevant reaction engineering data safely and with low consumption.

- Microreaction technology will find a number of **niches** in analytical and process chemistry in the new millenium.
Acknowledgements

LA Board of Regents RCS Program

NSF-EPSCoR Research Infrastructure Program

Materials Research Society

Institute for Micromanufacturing, Ruston, LA

Stevens Institute of Technology