Repowering New Orleans - a new approach to a historic city

Transmission Project Management & Construction

Rick Torres

Tulane Engineering Forum

April 21, 2017
Presentation Objectives

• Project Overview and Purpose

• Risks and Challenges of the project

• Risk Mitigation plans and project strategies

• Lessons for Future
Project Overview

Purpose: Replace output of the aging Michoud Power Plant by Summer of 2016

Background:
- Plant built late 1950s
- Located in New Orleans East
- 875MW Generating Station
- Key source of peak power for NOLA

Scope:
- Upgrade Ninemile to Derbigny and Ninemile to Napoleon 230kV Transmission Lines
- Reconductorto 2100A
- Maintain existing sag profile
Load Flow Analysis: Prior to Michoud De-Activation
Load Flow Analysis: After Michoud De-Activation

Project Overview

Ninemile-Napoleon: Light **Blue** Line (4.4 miles)
Ninemile-Derbigny: Lime **Green** Line (6.6 miles)
Challenges and Hazards - Landscape

- Tight working areas
 - Cars
 - Proximity to homes
 - Size of equipment
 - Trees
- Ingress/Egress
- Major Road Crossings
 - Interstate Crossings
 - Magazine, Earhart, & Carrollton
- Equipment setup
Challenges and Hazards - Safety/Public

• Energized Distribution Lines

• Large construction zones in neighborhoods

• Public Inconveniences
 – Residents on route
 – Road Closures

• Katrina Fatigue
Challenges and Hazards - Outages

Ninemile Scope:

• Re-conductor five (5) spans of two 230kV lines at the Ninemile generation facility.

• 230kV lines cross over five (5) 115kV transmission lines.

• Conventional construction methods require outages on all lines to work safely.

• Two system events from load shed of up to 560MW.
Project Strategy – Reduce Public Impact

• Design considerations
 – Steel poles built in the late 1960s
 – Maintain existing sag profile
 – Do not exceed existing tensions
 – Replacing structures not an option

• Selected 3M 1272 ACCR “Diver” conductor
 – Saved existing structures
 – Minimized community impact
 – Installed smaller wire

EXISTING
1780 ACSR “CHUKAR”
84/19
1.60” OD
2.08 Pounds/Foot
51,000 Pounds RBS
Ampacity @ Max OP: 1608A

NEW
1272-T09 Diver ACCR
48/19
1.382” OD
1.377 Pounds/Foot
37,300 Pounds RBS
Ampacity @ Max OP: 2179A
Project Strategy – Construction in segments

• Divide line into segments
 – 90 Degree turns

• Stage 1: Pre-Pull
 – 2-4 Hours per Pole
 – Replace Davit Arms with Braced-Post Insulators
 – Place existing wire in stringing blocks

• Stage 2: Pull
 – 29 Total Segments
 – 46.7 Total Miles of Wire Pulled

• Stage 3: Post-Pull
 – 2-4 Hours per pole
 – Remove pulleys
 – Clip in wire
Project Strategy – Prepare Public and Communicate

• Collateral Material
 – 10 Day
 – 3 Day
 – Next Day

• Public Engagement
 – Town Hall Meetings
 – On the Street
 – Keep everyone safe

• Road Closure Maps
• Website/Hot Line
Project Strategy – Plan for Interstate Crossings

- Police Engagement
- Media Coverage and Public Notice
- Emergency Recovery Plan
Project Strategy – Eliminate Significant Load Risk

• Analyze Outage risk and mitigation strategies

• Hire specialized crews to perform the worked energized

• Develop Emergency Recovery Plan
Project Lessons for the Future

• Project Planning starts at conception

• Risk Analysis is critical

• Mitigation plans must have detail

• Communicate and Engage all stakeholders using multiple methods

• Execute Precisely

Customer compliments:

“I work at home, but whenever I needed to leave the house, someone was there to escort me. A special thank you.” – Chris, Entergy customer

“I have never seen such professional kind, courteous of all employees doing this major upgrade on Patton St. Thanks for just doing it perfect.” – Philip, Entergy customer

“I have been so amazed by how smoothly the operation has been to upgrade the lines on the street that runs next to my house.” - Patty, Entergy customer

“I feel lucky to have such a gracious and wonderful team of people to serve near my home during the transmission project.” - Madeline, Entergy customer